Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 7(3)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28336900

RESUMO

Polymers have lower resistance to scratching and wear than metals. Liquid lubricants work well for metals but not for polymers nor for polymer-based composites (PBCs). We review approaches for improvement of tribological properties of polymers based on inclusion of fillers. The fillers can be metallic or ceramic-with obvious consequences for electrical resistivity of the composites. Distinctions between effectiveness of micro- versus nano-particles are analyzed. For example, aluminum nanoparticles as filler are more effective for property improvement than microparticles at the same overall volumetric concentration. Prevention of local agglomeration of filler particles is discussed along with a technique to verify the prevention.

2.
J Nanosci Nanotechnol ; 15(9): 6604-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26716217

RESUMO

We have determined shear viscosities as a function of temperature for several liquid high temperature polymers (HTPs) as potential coatings for solid state thermoelectric generators (TEGs) as well as for TE coolers (TECs). To each HTP we added in turn several ceramic nanopowders: alumina, silica and multi-wall carbon nanotubes (MWCNTs). The shear rate applied range is from 0.0002 to 60 s(-1). The results are compared to those for neat HTPs. For a given HTP, we obtain for some nanopowders significant lowering of viscosity, or else a significant increase, or else a small effect only. Possible reasons for such differences in behavior are discussed in terms of the spatial structures of CNTs (random orientations at low temperatures), and the interactions between functional groups on HTPs and atoms in the nanoceramics.

3.
J Nanosci Nanotechnol ; 13(6): 4446-55, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862519

RESUMO

Polyurethane-based micro- and nano-hybrid composites were produced with controlled porosity to be used as obturation materials. In addition to hydroxyapatite (HAp) micro-particles in the composites, two different ceramics particle types were also added: alumina micro-particles and silica nano-particles. Particles of different sizes provide the materials with improved mechanical properties: the use of micro- and nano-particles produces a better packing because the nano-particles fill the interstitial space left by the micro-particles, rendering an improvement in the mechanical properties. The silica and alumina particles provide the materials with appropriate abrasion and scratching properties, while the HAp provides the required bio-acceptance. The polymeric matrix was a mono-component solvent-free polyurethane. The porosity was selected by controlling the chemical reaction.

4.
J Nanosci Nanotechnol ; 9(11): 6661-7, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19908581

RESUMO

Two silicas with different particle sizes have been synthesized by the Stöber method. The particles have been functionalized with methacryloyl groups. In situ emulsion polymerization of butyl acrylate and methyl methacrylate in the presence of functionalized silica particles was performed. The ratio of butyl acrylate to methyl methacrylate was varied in order to optimize the composition for improvement of tribological and thermophysical properties. The silica particles morphology and functionalization have been determined respectively by scanning electronic microscopy and infrared spectroscopy. The composites were characterized also by thermogravimetric analysis, differential scanning calorimetry, microscratch testing and static light scattering. The latex reinforced with the smallest functionalized silica exhibits higher thermal stability than the non reinforced latex, along with lower penetration depth and higher residual depth in progressive load scratch testing. Thus, the resistance to penetration is increased while viscoelastic healing is hampered by silica particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...